If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-24=2r
We move all terms to the left:
4r^2-24-(2r)=0
a = 4; b = -2; c = -24;
Δ = b2-4ac
Δ = -22-4·4·(-24)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{97}}{2*4}=\frac{2-2\sqrt{97}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{97}}{2*4}=\frac{2+2\sqrt{97}}{8} $
| 13q+3q-15q=14 | | 90=30+2x | | -15u+16u=12 | | 5=q+218 | | u−68-2 = -9 | | 12m+4m-10m=18 | | x^2*(x+0.01)=0 | | 4^x=1/2^x-9 | | 63x+77+4x+54=180 | | 5=q+21/8 | | 6v^2-21=10v | | 17m-13m=16 | | n/4=−11 | | 6x-3x-9=-5x+7x-3 | | 7k+2k+1=19 | | 81^(a+2)=3^(a+1) | | 6(w-83)=48 | | 10t-5t+2t-7t+2t=6 | | a^2-8a=65 | | 7(x+11)=49x | | 4^2x=200 | | -19=-p+29 | | 4n^2-4n=99 | | 10+5r=90 | | 2x+45=x+45 | | 9w=-64 | | 4+(w*2)=35 | | -9w+12w+-2w=6 | | -36k-40=30+7k | | 2(5z-3)=12z+16 | | -0.33+5e=-0.75 | | -4.5=-0.5{x-7.1} |